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Two-particle problem in a nonequilibrium many-particle system
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The two-particle problem within a nonequilibrium many-particle system is investigated in the framework of
real-time Green’s functions. Starting from the nonequilibrium Bethe-Salpeter equation on the Keldysh contour,
a Dyson equation is given for two-time two-particle Green’s functions. Thereby the well-known Kadanoff-
Baym equations are generalized to the case of two-particle functions. The two-time structure of the equations
is achieved in an exact way using the semigroup property of the free-particle propagators. The frequently used
Shindo approximation is thus avoided. It turns out that results obtained earlier are valid only in limiting cases
of a nondegenerate system or a static interaction, respectively. For the case of thermodynamic equilibrium, the
differences to former results obtained for the effective two-particle Hamiltonian are discussed.
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I. INTRODUCTION

This paper is devoted to the kinetic theory of man
particle systems which are able to form bound states. S
systems arise in very different fields, e.g. nuclear, semic
ductor and plasma physics, respectively. To be specific,
will consider the case of two-particle bound states, e.g.,
drogenlike atoms or ions. Our focus will be the derivation
a kinetic equation for the distribution function of the~possi-
bly excited! bound states. Starting with papers by, for i
stance, Waldmann@1#, Snider and co-workers@2,3#, McLen-
nan and co-workers@4–6#, and Klimontovich and Kremp@7#,
the derivation of kinetic equations has appealed great inte
over many years. Usually~see, e.g. the review article b
Klimontovich et al. @8#! the two-particle density matrix is
split into different parts with respect to some projection o
erator which projects onto the space of the bound sta
Often the states are taken to be those of the isolated a
The diagonal matrix elements are considered to be the
tribution function for the respective bound state. However
a dense system, it is not clear whether the diagonalizatio
the density matrix with respect to the unperturbed tw
particle states is a good approximation.

It is well known that many-particle effects like dynamic
screening, self-energies, or phase space occupation may
an influence on the two-particle properties. A unique desc
tion of these effects within the investigation of nonequili
rium behavior can be given in the framework of the real-tim
Green’s functions technique. For the single-particle fu
tions, there were derived the Kadanoff-Baym equations
the correlation functionsga

: . In this paper we aim at the
derivation of similar equations on the two-particle level.

Some remarks on the bound state problem in equilibri
seem to be useful first. The investigation of bound state
dense systems has been the topic of a lot of papers~for
references, see Refs.@9# and @10#!. In the framework of the
Green’s functions method, a proper starting point is the
called Bethe-Salpeter equation~BSE! for the two-particle
PRE 601063-651X/99/60~6!/6382~13!/$15.00
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causal Green’s function@11–13#

gab~12,1828!5ga~1,18!gb~2,28!

1 i E d1̄d2̄d1̃d2̃ga~1,1̄!gb~2,2̄!

3Kab~ 1̄2̄,1̃ 2̃!gab~ 1̃ 2̃,1828!. ~1!

The kernel of this integral equation, the effective interacti
Kab , is a four point function and has a dynamical charac
This makes the structure complicated: although one is in
ested only in the two-particle Green’s function in th
particle-particle channel (t15t2 and t185t28), the knowledge
of a Green’s function with three times is enforced in t
integral term. In Fourier space~or within the Matsubara tech
nique!, this corresponds to the problem that, for the deter
nation of the two-particle Green’s function dependent on o
frequency, a more general function dependent on two
quencies has to be known. A way out of this dilemma w
attempted by applying the Shindo approximation@14#, in
which a causal quantity with two frequencies is construc
from a quantity with one frequency. Then one obtains
closed equation for the causal Green’s function. There
few estimations on the range of validity of this approxim
tion. It is an exact relation for a static interactionK. It has
been argued that the Shindo approximation reflects a
order approximation with respect to the retardation of
effective interaction@15,10,16#.

With help of this BSE, an effective Schro¨dinger equation
was derived which has some important corrections in co
parison with that for an isolated atom:~i! phase space occu
pation factors,~ii ! exchange self-energies~Hartree-Fock!,
~iii ! a dynamically screened effective potential, and~iv! dy-
namical single-particle self-energy corrections. It has be
shown that for localized states there is, to a large exten
compensation between the effects~i! and ~iii ! on one side
and ~ii ! and ~iv! on the other. It follows that the binding
6382 © 1999 The American Physical Society
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PRE 60 6383TWO-PARTICLE PROBLEM IN A NONEQUILIBRIUM MANY-PARTICLE SYSTEM
energies of~at least the low lying! bound states are no
changed considerably in comparison with the isolated at
In contrast, there is a large shift of the continuum edge by
self-energy corrections. This results in a lowering of ioniz
tion energies with increasing plasma density and leads, a
end, to the well-known Mott effect. An effective wave equ
tion was solved numerically in Refs.@17,18#; for a discussion
of the result, see Kraeftet al. @19#.

However, the results obtained for the effective Ham
tonian also have some serious shortcomings. There occu
division by Pauli-blocking factors 12 f a2 f b , which causes
spurious pole structures for highly degenerate systems.
ther, the effective Hamiltonian has static contributions wh
lack a clear physical interpretation~see, e.g., Ref.@20#!.

Another approach was given by Schuck and co-work
@21,22#. They postulated that Dyson equations exist for tw
time causal and retarded Green’s functions, respectively.
pressions for the self-energy operator~also called the mas
operator or effective Hamiltonian! are derived by compari
son with the respective equations of motion. Also in th
approach, it remains unclear what approximation~if any! is
connected with the assumption that such two-time Dy
equations for the investigated functions and the inverse
those functions, respectively, do exist. There also occu
problem of division by Pauli-blocking factors.

In nonequilibrium one can derive an equation of the sa
structure as in Eq.~1!; however, the time integrations the
have to be performed on the Keldysh contour. Scha¨fer et al.
@23# considered a dynamically screened ladder approxi
tion for the polarizability in a semiconductor within th
Keldysh formalism. They gave a formulation for function
depending on three times or—after Fouri
transformation—on two frequencies. At the end, howev
they used the Shindo approximation for these two-freque
quantities in order to obtain kinetic equations for sing
frequency functions.

There were attempts to generalize the Shindo approxi
tion to functions in the time domain@24#. There was also an
attempt @25# to generalize the approach of Schucket al.
within the nonequilibrium real-time Green’s function
method, postulating a Dyson equation for the retarded fu
tion gab

R (t,t8)5Q(t2t8)(gab
. 2gab

, ). In both approaches
similar results were achieved, and the equilibrium resu
could be reproduced. Thus the same shortcomings aros

Within another approach@26#, here we will present the
solution to this problem. The real-time Green’s functio
method allows us to describe nonequilibrium systems.
sults for thermodynamic equilibium will appear as a spec
case of the more general equations. In this paper the n
equilibrium Bethe-Salpeter equation is considered in a c
crete approximation, the so-called dynamically screened
der equation. This is the simplest approximation in which
effective interaction is of a dynamical nature. This will e
able us to identify the underlying algebraic structures and
keep the equations as simple as possible. The general sc
will be investigated in a forthcoming paper@27#.

The structure of this paper is as follows. In Sec. II t
scheme of the real-time Green’s function method for sing
particle Green’s functions is summarized. The difficulties
the BSE are discussed in Sec. III. Properties of two-ti
two-particle correlation and propagator functions, resp
.
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tively, are given in Sec. IV. The transformation of the BS
into a Dyson equation is shown in Sec. V. The two-tim
structure will be achieved by applying the semigroup pro
erty of the ideal propagators. After that, the algebraic str
tures turn out to be similar to those of the nonequilibriu
Dyson-Keldysh equation in the single-particle case. T
thermodynamic equilibrium case is considered in Sec.
The structure of the two-particle self-energy which can
understood as an effective Hamiltonian is discussed. The
sults are compared with the former ones@12,15,10,20#. It
will turn out that only in the nondegenerate case and in
static limit is one led to the same results.

II. SINGLE-PARTICLE QUANTITIES

Let us briefly summarize the scheme of real-time Gree
function technique in the single-particle case. The equati
are given on a double-time contour, on the so-called Keld
contour @28,29#. Working on the Keldysh contour has th
advantage that well-developed schemes of functional der
tives and diagrammatic techniques known from equilibriu
@30,31# can easily be generalized to nonequilibrium situ
tions; see, e.g., Refs.@29,32–34#.

The nonequililibrium Dyson equation on the Keldys
contour reads

ga~1,18!5ga,0~1,18!1E
C
d1̄d1̃ga,0~1,1̃!Sa~ 1̄,1̃!ga~1̃,18!,

~2!

with 15r1 ,t1 etc., andga,0 being the ideal functions andSa

the self-energy,a denotes the species. The time integratio
are performed on the Keldysh contour; see Fig. 1. The
derlined quantities are matrices containing four functio
One obtains the causal functions for both times on the up
branch of the contour,ga5ga

11 , and anticausal ones fo

both times on the lower branch,ḡa5ga
22 . If the first time is

on the upper branch and the second one on the lower bra
one obtainsga

,5ga
12 . Fixing the first time on the lower

branch and the second time on the upper branch givesga
.

5ga
21 . One can see that these elements are not all inde

dent. It turns out that the equations achieve a more con
nient structure if one introduces two other quantitiesga

R and
ga

A , defined by

FIG. 1. Time ordering on the Keldysh double time contour f
the functiongab

12,21 . The ordering is causal on the upper branc
and anticausal on the lower branch.
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6384 PRE 60TH. BORNATH, D. KREMP, AND M. SCHLANGES
ga
R/A5ga2ga

"5ga
:2ḡa . ~3!

Equation~2! turns into the following form of the nonequi
librium Dyson equation for the correlation functionga

, ,

ga
,~ t,t8!5ga,0

, ~ t,t8!

1E
t0

`

dt1E
t0

`

dt2@ga,0
, ~ t,t1!Sa

A~ t1 ,t2!ga
A~ t2 ,t8!

1ga,0
R ~ t,t1!Sa

,~ t1 ,t2!ga
A~ t2 ,t8!

1ga,0
R ~ t,t1!Sa

R~ t1 ,t2!ga
,~ t2 ,t8!#, ~4!

which has to be supplemented by an equation forga
R/A :

ga
R~ t,t8!5ga,0

R ~ t,t8!

1E
t0

`

dt1E
t0

`

dt2 ga,0
R ~ t,t1!Sa

R~ t1 ,t2!ga
R~ t2 ,t8!.

~5!

Here only the functions’s dependence on times was wri
explicitly in order to save space. Often the initial time
considered in the limitt0→2`. The quantityga

A is con-
nected withga

R by ga
A(r t,r 8t8)5@ga

R(r 8t8,r t)#†.
In the following sections the one-particle self-energy w

be needed in a special approximation which is called theVS

approximation~and often also called theGW approxima-
tion!. This approximation which involves the dynamical
screened potential, allows one to describe the influence
plasma on the particles’ propagation in it. Here one has

Sa~1,18!5Sa
H1 i Vaa

S ~1,18!ga~1,18!, ~6!

with SH being the Hartree self-energy. As for the Green
functions, there is a set of functions describing the dyna
cally screened interactionVab

S , e.g.,

Vab
S ~ t,t8!5Vabd~ t2t8!1Q~ t2t8!Vab

S.~ t,t8!

1Q~ t82t !Vab
S,~ t,t8!, ~7!

and, further,Vab
S 1V̄ab

S 5Vab
S.1Vab

S, , andVab
R/A5Vab

S 2Vab
S" .

Here the correlation functions are defined by

Vab
S:~ t,t8!5(

c,d
VacLcd

: ~ t,t8!Vdb , ~8!

whereL: are the correlation functions of density fluctuatio

iL ab
. ~r1t1 ,r2t2!5^dr̂a~r1 ,t1!dr̂b~r2 ,t2!&,

~9!
iL ab

, ~r1t1 ,r2t2!5^dr̂b~r2 ,t2!dr̂a~r1 ,t1!&,

with dr̂a(r ,t)5Ca
†(r ,t)Ca(r ,t)2^Ca

†(r ,t)Ca(r ,t)&, and
Ca

† andCa are creation and annihilation operators of seco
quantization obeying the known commutation relations
follows that, e.g., Vab

S,(1,18)5Vba
S.(18,1) and Vab

S (1,18)
5Vba

S (18,1), butVab
SR(1,18)5Vba

SA(18,1).
n

a

i-

d
t

III. BETHE-SALPETER EQUATION

The two-particle Green’s function is determined by t
so-called Bethe-Salpeter equation

gab~12,1828!5ga~1,18!gb~2,28!

1 i E d1̄d2̄d1̃d2̃ga~1,1̄!gb~2,2̄!

3Kab~ 1̄2̄,1̃2̃!gab~ 1̃2̃,1828!, ~10!

in which, by introduction of the effective interaction kern
Kab , a closed equation is formally achieved for the fou
point function. Here the kernelKab is the sum of all dia-
grams irreducible with respect to a cutting of two sing
particle lines. The Bethe-Salpeter equation can
understood to hold in various contexts: for the ground st
T50!, for the imaginary-time equilibrium Green’s function
in the Matsubara technique, or for the real-time Gree
functions on the Keldysh contour.

The properties of a pair of particles should follow fro
this equation in the so-called particle-particle channel. If o
considers the causal two-particle Green’s function in t
channel (t15t25t;t185t285t8), one has

i 2gab~r 1r 2t,r 18r 28t8!

5u~ t2t8!^Ca~r1 ,t !Cb~r2 ,t !Cb
†~r28 ,t8!Ca

†~r18 ,t8!&

1u~ t82t !^Ca
†~r18 ,t8!Cb

†~r28 ,t8!

3Cb~r2 ,t !Ca~r1 ,t !&

5u~ t2t8!i 2gab
. 1u~ t82t !i 2gab

, . ~11!

On the right hand side of Eq.~10!, however, there occurs
function depending on three timest̄ 1 , t̄ 2, and t8, which is
enforced by the dynamical character ofKab . This Green’s
function consists of six different correlation functions:

i 2gab~ r̄ 1 t̄ 1r̄ 2 t̄ 2 ;r 18r 28t8!

5u~ t̄ 12 t̄ 2!u~ t̄ 22t8!^CaCbCb
†Ca

†&

6u~ t̄ 22 t̄ 1!u~ t̄ 12t8!^CbCaCb
†Ca

†&

1u~ t̄ 12t8!u~ t82 t̄ 2!^CaCb
†Ca

†Cb&

1u~ t̄ 22t8!u~ t82 t̄ 1!^CbCa
†Cb

†Ca&

6u~ t82 t̄ 1!u~ t̄ 12 t̄ 2!^Ca
†Cb

†CaCb&

1u~ t82 t̄ 2!u~ t̄ 22 t̄ 1!^Ca
†Cb

†CbCa&. ~12!

Only a static interaction in Eq.~10! would enforcet̄ 15 t̄ 2,
and the function would turn into the two-time causal o
@Eq. ~11!#.

In principle, one could of course try to solve the Beth
Salpeter equation for a function depending on three tim
~equivalent to a function depending on two frequencies!, and
then extract from this the information one is interested
This, however, seems to be too complicated.
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In a number of papers attempts were made to work w
equations which involve two-time functions exclusivel
This was achieved in two ways. The first approach@12,13#
uses the so-called Shindo approximation within the Mats
ara technique, in which the two-frequency function is co
structed from the single-frequency causal Green’s funct
This is possible in an exact way for a statical interaction, a
therefore it was argued that for arbitraryKab this would be
correct in first order with respect to the retardation. In t
other approach@21#, a closed equation for the causal tw
time or single-freqency function, respectively, is postulat
The effective Hamiltonian~two-particle self-energy! is then
determined by comparison with equations of motion.

However, enforcing a closed equation for combinations
the correlation functionsgab

: defined in Eq.~11! means that
the information contained in the correlation functio
^CaCb

†Ca
†Cb& and^CbCa

†Cb
†Ca& @third and fourth terms in

Eq. ~12!# is neglected. Therefore, such a closed equation
the causal two-time Green’s function can exist only in
approximate way. In Sec. V we will show that closed equ
tions do exist only for other combinations of correlatio
functions.

IV. TWO-PARTICLE GREEN’S FUNCTIONS DEPENDING
ON TWO TIMES

In analogy to the single-particle case, one is intereste
obtaining information on the statistical properties, carried
the two-particle density matrix, as well as information on t
two-particle dynamics, i.e., spectral information. Below w
will see that it is not a trivial question to ask which quant
carries this information.

One of the quantities of interest is the following two-tim
correlation function

gab
, ~r1r2t,r18r28t8!

5
1

i 2
^Ca

†~r18 ,t8!Cb
†~r28 ,t8!Cb~r2 ,t !Ca~r1 ,t !&.

~13!

In the caset85t, the quantityi 2 gab
, is just the two-particle

density matrixrab(r1r2r18r28 ,t).
There are some other two-particle correlation functions

which the two creation operators have the timet185t285t8,
whereas the two annihilation operators have the timet15t2

5t. Although the physical timest1 and t2 as well ast18 and
t28 are equal, there are still 16 possibilities to fix the timest1 ,
t2 , t18 , and t28 on the upper and lower branches of t
Keldysh contour. Fixing the timest1 and t2 on the upper
branch of the Keldysh contour andt18 and t28 on the lower
branch, one obtains the correlation functiongab

11,225gab
,

defined in Eq.~13!. Three other important cases are the f
lowing:
h

-
-
n.
d

e

.

f

r

-

in
y

n

-

gab
12,21~r1r2t,r18r28t8!

5Q~ t2t8!
1

i 2
^Ca

†~r18 ,t8!Cb~r2 ,t !

3Ca~r1 ,t !Cb
†~r28 ,t8!&1Q~ t82t !

1

i 2
^Cb~r2 ,t !

3Ca
†~r18 ,t8!Cb

†~r28 ,t8!Ca~r1 ,t !&, ~14!

gab
21,12~r1r2t,r18r28t8!

5Q~ t2t8!
1

i 2
^Cb

†~r28 ,t8!Ca~r1 ,t !Cb~r2 ,t !

3Ca
†~r18 ,t8!&1Q~ t82t !

1

i 2
^Ca~r1 ,t !Cb

†~r28 ,t8!

3Ca
†~r18 ,t8!Cb~r2 ,t !&, ~15!

gab
11,22~r1r2t,r18r28t8!5

1

i 2
^Ca~r1 ,t !Cb~r2 ,t !

3Cb
†~r28 ,t8!Ca

†~r18 ,t8!&.

~16!

To give an example, the time ordering on the Keldysh co
tour is shown forgab

12,21 in Fig. 1. All other functions
gab

ab,gd with greek indices equal to ‘‘1 ’’ or ‘‘ 2 ’’ can be
expressed in terms of the six correlation functions involv
in Eqs.~13! and ~14!–~16!.

We define the following retarded and advanced quantit

Gab
R ~r1r2t,r18r28t8!

[Q~ t2t8!i ~gab
11,222gab

12,212gab
21,121gab

22,11!

5Q~ t2t8!
1

i
^†Ca

†~r18 ,t8!,@Cb
†~r28 ,t8!,Cb~r2 ,t !

3Ca~r1 ,t !#2‡7&, ~17!

Gab
A ~r1r2t,r18r28t8!

[Q~ t82t !~2 i !~gab
11,222gab

12,212gab
21,121gab

22,11!

5Q~ t82t !
1

2 i
^†Ca~r1 ,t !,@Cb~r2 ,t !,Cb

†~r28 ,t8!

3Ca
†~r18 ,t8!#2‡7&. ~18!

In order to achieve the nested commutator structures,
used the fact that operators with equal times can be in
changed according to the well-known relations. Interestin
enough, these nested structures were found also by Raj
pal and Majumdar in their analysis of double dispersion
lations for the two-frequency causal Matsubara Gree
function~Appendix II of Ref.@11#!. We showed in Appendix
C of Ref.@35# how the functionGab

A is connected in thermo
dynamic equilibrium with the analytic continuation of th
two-frequency Matsubara Green’s function. The functio
Gab

R/A have the following properties.
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~i! They are connected by Hermitian conjugation

Gab
R ~r1r2t,r18r28t8!5@Gab

A ~r18r28t8,r1r2t !#†. ~19!

~ii ! Both functions have the property of crossing symm
try, i.e.,

Gab
R/A~r1r2t,r18r28t8!5Gba

R/A~r2r1t,r28r18t8!. ~20!

~iii ! The inhomogeneity in the equations of motion f
these functions consists ofd functions only~without Pauli-
blocking terms!. This is easy to see from Eqs.~17!, and~18!.
Derivation of the Heaviside function gives ad function d(t
2t8), and the commutation relations for the field operat
lead to@d(r12r18)d(r22r28)6dabd(r12r28)d(r22r18)#.

~iv! For vanishing interaction between particlesa and b,
the correlation functions in Eqs.~17! and ~18! can be con-
tracted into products of single-particle correlation functio
g:; one obtains

Gab
R ~r1r2t,r18r28t8!5 iga

R~r1t,r18t8!gb
R~r2t,r28t8!

6dabiga
R~r1t,r28t8!gb

R~r2t,r18t8!,

~21!

with the retarded single-particle functionga
R defined by Eq.

~3!.
~v! The difference of the retarded and the advanced fu

tions defines a spectral function

Aab~r1r2t,r18r28t8!

5 iGab
R ~r1r2t,r18r28t8!2 iGab

A ~r1r2t,r18r28t8!

5 i 2@gab
11,222gab

12,212gab
21,121gab

22,11#,

~22!

which, in the case of equal times (t5t8), gives

Aab~r1r2t,r18r28t !5d~r12r18!d~r22r28!

6dabd~r12r28!d~r22r18!, ~23!

which corresponds to a sum rule in frequency spa
*dv/(2p)Aab(v,t)51.

We will see in Sec. V that the two-time functions defin
by Eqs.~13!–~16! and ~17!–~18! will be the constituents of
the algebraic structure of a two-particle nonequilibriu
Dyson equation.

V. TRANSFORMATION OF THE BETHE-SALPETER
EQUATION INTO A DYSON EQUATION

The present section, together with the foregoing, is
most important part of this paper. The Bethe-Salpeter eq
tion will be considered here in a concrete approximation:
the effective interaction kernelKab , the dynamically
screened potentialVab

S is taken. This is the simplest approx
mation in whichKab has a dynamical character which w
allow us to identify the general algebraic structure of a tw
particle Dyson equation.

In this approximation one has on the Keldysh contour
-

s

s

c-

e,

e
a-
r

-

gab~ t1t2 ,t18t28!5ga~ t1 ,t18!gb~ t2 ,t28!

1E
C
d t̄1 d t̄2 ga~ t1 , t̄ 1!gb~ t2 , t̄ 2!

3 i Vab
S ~ t̄ 1 , t̄ 2!gab~ t̄ 1 t̄ 2 ,t18t28!. ~24!

Iteration of this integral equation leads to ladder-type term
This BSE ~24! will be considered in the following in the
special casest15t25t and t185t285t8.

Below the dynamically screened ladder equation as a s
cial approximation of the BSE is transformed into a Dys
equation in which the occurring two-particle Green’s fun
tions and two-particle self-energy functions are dependen
two times only. For this purpose, the perturbation expans
of the BSE ~24! is considered in the diagrammatic form
shown in Fig. 2. It is analyzed first forgab

, ; details are pre-
sented for different orders ofVab

S in the Appendix.
We search for~and, indeed, find! the structures@cf. the

corresponding equations for the single-particle functio
Eqs.~4! and ~5!#

gab
, 5G ab

, 1G ab
R @Vab1Sab

R #gab
, 1G ab

R sab
, Gab

A

1G ab
, @Vab1Sab

A #Gab
A , ~25!

Gab
A 5G ab

A 1G ab
A @Vab1Sab

A #Gab
A , ~26!

with the definitions G ab
, (t,t8)5ga,0

, (t,t8)gb,0
, (t,t8),

G ab
R (t,t8)5 iga,0

R (t,t8)gb,0
R (t,t8), and G ab

A (t,t8)5

(2 i )ga,0
A (t,t8)gb,0

A (t,t8). All quantities in the above equa
tions depend on two times only. The integration of interm
diate times runs in the interval@ t0 ,`# as in Eqs.~4! and~5!.

FIG. 2. Diagrammatic expansion of the dynamically screen
ladder equation up to second order.
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The zeroth order ofgab
, with respect to the two-particle

self-energy isgab
,(0)5G ab

, ; first and second orders are give
by

gab
,(1)5G ab

R @Vab1Sab
R #G ab

, 1G ab
R sab

, G ab
A

1G ab
, @Vab1Sab

A #G ab
A , ~27!

gab
,(2)5G ab

R @Vab1Sab
R #G ab

R @Vab1Sab
R #G ab

,

1G ab
R @Vab1Sab

R #G ab
R sab

, G ab
A

1G ab
R @Vab1Sab

R #G ab
, @Vab1Sab

A #G ab
A

1G ab
R sab

, G ab
A @Vab1Sab

A #G ab
A

1G ab
, @Vab1Sab

A #G ab
A @Vab1Sab

A #G ab
A . ~28!

The self-energy functionssab
, and Sab

R , respectively, are
then identified by comparison with the expansion terms
the ladder equation~Fig. 2!.

All functions in the above equations~25! and ~26! are
understood to depend on two times. The key idea in orde
achieve such a two-time structure of the equations is to
the semigroup properties of the ideal single-particle propa
tors ga,0

R and ga,0
A ~the time-local Hartree-Fock self-energ

could also be included!. In particular, for any timet̄ with t

. t̄ .t8 one has the following relation:

ga,0
R ~r1t,r18t8!5 i E d3r 2 ga,0

R ~r1t,r2 t̄ !ga,0
R ~r2 t̄ ,r18t8!.

~29!

There is no time integration in the above equation. Ana
gously, for the advanced function witht, t̄ ,t8, one has
~integration with respect tor2 suppressed! ga,0

A (t,t8)5

(2 i )ga,0
A (t, t̄ )ga,0

A ( t̄ ,t8).
For the ideal one-particle correlation functionsga,0

: , there
follows

ga,0
: ~ t,t8!5 iga,0

R ~ t, t̄ !ga,0
: ~ t̄ ,t8! for t. t̄ ,

ga,0
: ~ t,t8!5~2 i ! ga,0

: ~ t, t̄ !ga,0
A ~ t̄ ,t8! for t̄ ,t8,

~30!

ga,0
: ~ t,t8!5~2 i 2!ga,0

R ~ t, t̃ !ga,0
: ~ t̃ , t̄ !ga,0

A ~ t̄ ,t8!

for t. t̃ and t̄ ,t8.

Proceeding in the manner presented in the Appendix,
comparing the results with the anticipated structure@Eqs.
~25! and ~26!#, we obtain the following expression for th
retarded self-energy function:

FIG. 3. Diagrammatic structure of the two-particle self-ener
in first order inVS.
f

to
se
a-

-

d

Sab
R ~ t,t8!5 iSa

R~ t,t8!gb,0
R ~ t,t8!1 iSb

R~ t,t8!ga,0
R ~ t,t8!

1 igb,0
R ~ t,t8!iVab

S.~ t,t8!ga,0
R ~ t,t8!

1 igb,0
, ~ t,t8!iVab

SR~ t,t8!ga,0
R ~ t,t8!

1 iga,0
R ~ t,t8!iVab

S,~ t8,t !gb,0
R ~ t,t8!

1 iga,0
, ~ t,t8!iVab

SA~ t8,t !gb,0
R ~ t,t8!, ~31!

where the one-particle self-energies have to be used in
order of the dynamically screened potentialVS @cf. Eq. ~6!#,
i.e.,

Sa
R~ t,t8!5Sa

H~ t !d~ t2t8!1 iVaa
S.~ t,t8!ga

R~ t,t8!

1 iVaa
SR~ t,t8!ga

,~ t,t8!. ~32!

The correlation functionsab
, is found to be

sab
, ~ t,t8!5Sa

,~ t,t8!gb,0
, ~ t,t8!1Sb

,~ t,t8!ga,0
, ~ t,t8!

1gb,0
, ~ t,t8!iVab

S,~ t,t8!ga,0
, ~ t,t8!

1ga,0
, ~ t,t8!iVab

S.~ t8,t !gb,0
, ~ t,t8!, ~33!

where the single-particle self-energy functionSa
, is given by

Sa
,(t,t8)5 iVaa

S,(t,t8)ga
,(t,t8).

The diagrammatic structure of the two-particle se
energy functions is shown in Fig. 3. Primarily, these fun
tions consist of naked lines because we worked in first or
with respect to the dynamically screened potential. Howev

FIG. 4. Evaluation of the ladder terms with two rungs. The fir
third, fourth, and fifth terms are reducible, i.e., there are two s
cessive self-energy insertions of first order. The second and
terms, however, are not reducible: they are two-particle s
energies of second order inVS.
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all diagrams necessary to dress the lines could be foun
higher orders of the expansion; see Appendix A 2 and es
cially Fig. 5.

The self-energy functionsSab
R/A andsab

, are functionals of
single-particle Green’s functions. That is the reason why i
sufficient to consider the two equations~25! and ~26! in or-
der to determine the correlation functiongab

, . In higher ap-
proximations, the two-particle self-energy is also expected
be a functional of two-particle correlation functions. Th
one would need also the equations for the other three q
tities defined in Eqs.~14!–~16!. The full scheme of equa
tions reads~with F5$11,22%;$12,21%;$21,12%;
$22,11%):

gab
F 5G ab

F 1G ab
R @Vab1Sab

R #gab
F 1G ab

R sab
F Gab

A

1G ab
F @Vab1Sab

A #Gab
A , ~34!

Gab
R/A5G ab

R/A1G ab
R/A@Vab1Sab

R/A#Gab
R/A . ~35!

These equations are not all independent.Gab
R andGab

A are
connected by Hermitian conjugation. Further they are lin
combinations of the preceding four functionsgab

F according
to Eq. ~17!. The system of equations is consistent, i.e., co
bining the equations forgab

F according to Eqs.~17! or ~18!,
respectively, one obtains the Dyson equation~35!.

sF are given by~cf. Fig. 3!

sab
a,b,g,d5 i @Vaa

a,g~r1t,r18t8!1Vbb
b,d~r2t,r28t8!1Vab

a,d~r1t,r28t8!

1Vba
b,g~r2t,r18t8!#ga

a,g~r1t,r18t8!gb
b,d~r2t,r28t8!.

~36!

The retarded two-particle self-energy is defined in an
ogy to Gab

R by

Sab
R ~r1r2t,r18r28t8!5Sab

0 ~r1r2 ,r18r28t !d~ t2t8!

1Q~ t2t8!i @sab
11,222sab

12,21

2sab
21,121sab

22,11#. ~37!

The term which is local in time consists of the single-parti
Hartree and Hartree-Fock~HF! self-energies as well as th
Pauli-blocking contribution

FIG. 5. Here two other types of second-order terms are sho
in the first row two single-particle self-energies are combined,
in the second row one single-particle self-energy is combined w
one interaction between the particles. Depending on how the ti
overlap, there are three different kinds of diagrams.
in
e-

s

to

n-

r

-

l-

Sab
0 ~r1r2t,r18r28t8!5Sa

HF~r1r18t !d~r22r28!

1Sb
HF~r2r28t !d~r12r18!

1@ iga
,~r1t,r18t !d~r22r28!

1 igb
,~r2t,r28t !d~r12r18!#Vab~r182r28!.

~38!

Inserting the expression for thesab
F , @Eq. ~36!#, into Eq.

~37!, one indeed obtains Eq.~31!.
The advanced quantity Sab

A is given by
Sab

A (r1r2t,r18r28t8)5@Sab
R (r18r28t8,r1r2t)#†. The analytic prop-

erties of the two-particle self-energy are more involved th
those of the single-particle self-energies@36#, because off-
diagonal matrix elements can already occur in the spati
homogeneous case.

Often it is more useful to consider, instead of Eqs.~34!
and ~35!, the differential equations

F i
]

]t
2Ĥab

0 2VabGgab
F ~ t,t8!5E d t̄@Sab

R ~ t, t̄ !gab
F ~ t̄ ,t8!

1sab
F ~ t, t̄ !Gab

A ~ t̄ ,t8!#.

~39!

There are additional equations for the propagator functi
Gab

R andGab
A . As these two functions are connected by He

mitian conjugation, only the respective equation forGab
R is

written down:

F i
]

]t
2Ĥab

0 2VabGGab
R ~ t,t8!

5d~ t2t8!1E d t̄ Sab
R ~ t, t̄ !Gab

R ~ t̄ ,t8!. ~40!

Equations~34! and ~35! and ~39! and ~40!, respectively,
can be considered as the most important result of the pre
paper. The latter equations are the two-particle counterpa
the Kadanoff-Baym equations in the single-particle ca
Thus these equations are the proper basis for the descrip
of two-particle properties. From Eq.~39! there follow gener-
alized kinetic equations, whereas Eq.~40! gives information
on the spectral properties.

VI. THERMODYNAMIC EQUILIBRIUM

A. Two-particle Dyson equation

In thermodynamic equilibrium only the spectral properti
have to be determined, i.e., only Eq.~40! for the two-particle
propagator has to be considered. Its Fourier transform is

@V2Hab
0 2Vab2Sab

0 2Sab
R corr~V!#Gab

R ~V!51. ~41!

This equation can be called two-particle Dyson equation
likewise, the Bethe-Salpeter equation. We want to draw
reader’s attention to the fact that this equation is given h
for the functionGab

R , whereas in earlier attempts it was trie

n:
d
h
es
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to formulate such an equation for the causal two-part
Green’s function@12,21#, or a functiongab

R 5Q(t2t8)(gab
.

2gab
, ) @25#.

The static part of the two-particle self-energy in Eq.~41!
is given by Sab

0 5Sa
HF1Sb

HF1(Nab21)Vab . The self-
energy consists of two different types of terms: some do
contain an interaction between the particlesa andb, whereas
others do. The first terms are due to single-particle s
energies.

For the correlation part of the two-particle self-energ
there holds the same distinction:Sab

R corr(V) consists of two
contributions according to

Sab
R corr~V!5Dab

R ~V!1Vab
eff R~V!, ~42!

where the first one is due to the one-particle self-energies@cf.
the first two terms in Eq.~31!#, whereas the second one d
th
e

t

f-

,

scribes an effective interaction between particlesa andb in
the many-particle system@the last four terms in Eq.~31!#.
These terms can be further evaluated using a quasipar
approximation

6 iga
,~p,v!52pd„v2ea~p!…f a~v!, ~43!

with f a(v)5$exp@b(v2ma)#71%21. The correlation func-
tionsVab

: can be expressed in terms of the dielectric funct
«(v) and Bose functionsnB(v)5@exp(bv)21#21 according
to @37,10#

iVab
S,~q,v!522Vab~q!Im «R21~q,v!nB~v!,

~44!
iVab

S.~q,v!522Vab~q!Im «R21~q,v!@11nB~v!#.

For the functionDab
R (V), there follows
een these
Dab
R ~p1p2 ,p18p28 ,V!5~2p!6dp1 ,p

18
dp2 ,p

28E d3q

~2p!3E2`

` dv1

p
@2Im «R21~q,v1!#

3H Vaa~q!
16 f a~p11q!1nB~v1!

V2v12ea~p11q!2eb~p2!1 i0
1~a↔b,1↔2!J

5~2p!6dp1 ,p
18
dp2 ,p

28
@Sa

R
„p18 ,V2eb~p28!…1Sb

R
„p28 ,V2ea~p18!…#. ~45!

Thus this function is just the sum of the single-particle self-energies~in the VS approximation! to be taken off-shell.
The other contribution to the two-particle self-energy,Vab

eff , is given by

Vab
eff R~p1p2 ,p18p28 ,V!5~2p!3dp11p2 ,p

181p
28E2`

` dv1

p
@2Im «R21~p12p18 ,v1!#

3H Vab~p12p18!
16 f a~p1!1nB~v1!

V2v12ea~p1!2eb~p28!1 i0
1~a↔b,1↔2!J . ~46!

These two contributions to the two-particle self-energy look very similar. Replacing the Coulomb potentialVab by zazbV, with
za andzb being the charge numbers, one can see that for particles attracting each other, there is a compensation betw
two functions. This is especially to be seen considering the functions integrated with respect top1 andp2:

E d3p1

~2p!3E d3p2

~2p!3
@Dab

R ~p1p2 ,p18p28 ,V!1Vab
eff R~p1p2 ,p18p28 ,V!#

5~za1zb!E d3q

~2p!3E2`

` dv1

p
@2Im «R21~q,v1!#H zaV~q!

16 f a~p181q!1nB~v1!

V2v12ea~p181q!2eb~p28!1 i0
1~a↔b,1↔2!J .

~47!
e to

so
mil-

r-
il-

r

In the case of a symmetrical plasma,za52zb , the right
hand side of the above equation vanishes, and it follows

Sa
R
„p18 ,V2eb~p28!…1Sb

R
„p28 ,V2ea~p18!…

52E d3p1

~2p!3E d3p2

~2p!3
Vab

eff R~p1p2 ,p18p28 ,V!.

~48!
at
These expressions for the two-particle self-energy hav

be compared with the results of former papers@12,15#. The
notations are slightly different in comparison with ours,
one should compare the expressions of the effective Ha
tonians. The total Hamiltonian isHab

0 1Vab1Hab
pl (V), with

Hab
0 1Vab being the Hamiltonian of the isolated pair of pa

ticles whereas the medium-dependent part of the Ham
tonian is denoted byHab

pl (V). In the present paper this latte
quantity is given by
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Hab
pl ~V!5Sab

0 1Sab
corr~V!5Sa

HF1Sb
HF1NabVab2Vab

1Dab
R ~V!1Vab

eff R~V!, ~49!

whereV is to be understood as a parameter.
The differences consist in the following:~i! now there are

no additional static parts beyond the Hartree-Fock level,
~ii ! no division by Pauli-blocking terms occurs. Both thin
seem to be produced artificially in the former attempts
adopting a closed equation for the wrong quantity.

B. Limiting cases

It is interesting to study some limiting cases of our e
pressions. First, in the nondegenerate case the one-pa
distribution functions in Eqs.~45! and~46! can be neglected
Thus the result is in agreement with the nondegenerate l
of the former approaches using the Shindo approxima
@12,15,10,20#.

The second important limiting case is that of static
screening. Following Zimmermann@20#, we consider the
case that the excitation energy into a pair of two free p
ticles, ea(p1)1eb(p28)2V, is small in comparison with the
energyv1 occurring in the dielectric function. This could b
a reasonable approximation for excited states. Then, f
Eqs.~45! and ~46!, we obtain

Dab
R ~p1p2 ,p18p28 ,V!

5~2p!6d~p12p18!d~p22p28!

3E d3q

~2p!3 H @Vaa
S ~q,V50!2Vaa~q!#

3F6 f a~p11q!1
1

2G
1@Vbb

S ~q,V50!2Vbb~q!#F6 f b~p21q!1
1

2G J ,

~50!

and, for the effective interaction term,

Vab
eff R~p1p2 ,p18p28 ,V!

5~2p!3d~p11p22p182p28!@Vab
S ~p12p18 ,V50!

2Vab~p12p18!#@16 f a~p1!6 f b~p2!#. ~51!

Here it was used that Im«21 is an odd function, and that th
even part of the Bose functionnB(v) is 2 1

2 . Further, one
has

Vab
SR~q,V!5Vab~q!H 12E dv1

p

Im «21~q,v1!

V2v11 i0 J . ~52!

The terms in Eq.~50!, containing single-particle distribu
tion functions, and Eq.~51! can be combined withSab

HF and
NabVab , respectively, to give functionalsSab

HF$VS(V50%
and NabVab

S (V50) of the screened potentials in the sta
limit. The remaining terms in Eq.~50! give a constant term

The Dyson equation~41! can then be written
d

y

-
cle

it
n

l

r-

m

@V2Hab
eff#Gab

R ~V!51, ~53!

with the effective plasma Hamilton operator

Hab
eff5Hab

0 1 (
c5a,b

Sc
HF$VS~V50!%1NabVab

S ~V50!

1
1

2 (
c5a,b

E d3q

~2p!3
@Vcc

S ~q,0!2Vcc~q!#. ~54!

This is in aggreement with the static limit found by Zimme
mann@20#.

Considering this effective Hamiltonian for a nondegen
ate system, one can write~with Vab→zazbV)

Hab
eff5Hab

0 1zazbV~r !1zazb@VS~r ,V50!2V~r !#

1
1

2
@za

21zb
2#@VS~0,V50!2V~0!#. ~55!

Adopting for VS(r ,V50) the statically screened Deby
potential VD(r )5(e2/r )exp(2kr), for the Hamiltonian in
Eq. ~55! one obtains

Hab
eff5Hab

0 1zazbVD~r !2
1

2
~za

21zb
2!ke2. ~56!

The two last terms combined give the well-known effecti
potential of Ecker-Weizel type@38#, which has been used
frequently in order to determine energies and wave functi
of bound states in a plasma environment@15,10,39,40#.

C. Effective wave equation and two-particle energies

Equation~41!, which determines the two-particle propa
gator Gab

R , was written down in an operator form. Using
representation one obtains a matrix equation. In order
solve this equation it is favorable to use a representation
which diagonal elements are the main contribution. Here
follow Kilimann et al. @15#; however, now it is not possible
to achieve symmetric real and imaginary parts of the eff
tive Hamiltonian simply by multiplying with factorsNab

61/2.
Therefore the Hamiltonian is split into Hermitian and an
Hermitian parts. This leads to

@V2Hab
H ~V!#Gab

R ~V!2Hab
A ~V!Gab

R ~V!51, ~57!

with Hab
H (V)5Ha1Hb1Vab1Sab

0H1Sab
corrH(V). The ei-

genvalue problem of the Hermitian part of the Hamiltoni
reads

Hab
H ~V!unP,V&5EnP~V!unP,V&. ~58!

The eigenstatesunP,V&, where nP denote the quantum
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numbers andV is a real parameter, can be used as a ort
normal basis. The eigenvaluesEnP(V) of this effective
Schrödinger equation are not yet the spectrum of tw
particle excitions@15#. The latter follows from the spectra
function Aab .

In the representation with respect to the eigensta
unP,V&, Eq. ~57! reads~conservation of center-of-mass m
mentum already taken into account!
cl
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@V2EnP~V!#Gnn8
R

~P,V!2(
m

Hnm
A ~P,V!Gmn8

R
~P,V!

5dnn8 . ~59!

In the following it is assumed that nondiagonal matrix e
ments of the anti-Hermitian part of the effective Hamiltoni
are small. Then Eq.~59! has the approximate solution
Gnn8
R

~P,V!5
dnn8

V1 i02EnP~V!1 iGnn~P,V!
1

2 iGnn8~P,V!~12dnn8!

@V1 i02EnP~V!1 iGnn~P,V!#@V1 i02En8P~V!1 iGn8n8~P,V!#
,

~60!
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where it was introduced thatGnn8(P,V)5 iH nn8
A (P,V). For

the coherent part of the spectral function there follows

Ann~P,V!5
2Gnn~P,V!

@V2EnP~V!#21Gnn
2 ~P,V!

. ~61!

According to this equation, the spectrum of the two-parti
excitations is given by the rootsẼnP of

V5EnP~V!, ~62!

whereas the damping is given byGnn(P,ẼnP) @15#.

VII. SUMMARY AND CONCLUSION

Starting from the nonequilibrium BSE in the dynamica
screened ladder approximation, we have derived a set of
equilibrium Dyson equations for two-time, two-particle co
relation functions. The two-time structure of these equati
was achieved in an exact way using the semigroup prope
of the ideal one-particle Green’s functions. The price one
to pay for this simpler structure of the equation is that
two-particle self-energy in the Dyson equation now cons
of irreducible diagrams in all orders with respect to the d
namically screened potential~in some sense this is similar t
the transition from Feynman diagrams to Goldstone d
grams@31#!. Irreducibility means here that a diagram cann
be cut with respect to a pair of single-particle lines whi
begin at equal times and end at equal times, i.e., two or m
interaction potentials have some overlap in time.

For further considerations we have restricted ourselve
a two-particle self-energy in first order with respect to t
screened potential. The algebraic structure of the equatio
not affected by this approximation. It was shown that ther
a set of equations for four two-time correlation function
This generalizes the pair of Kadanoff-Baym equations for
one-particle correlation functionsg: (g12 and g21 , re-
spectively!. In analogy to the single-particle case there is
closed equation for the correlation functions, but alway
coupling to other correlation functions. Only for two certa
functions, namely,Gab

R/A , do there exist closed equation
Thus these functions are the two-particle generalization
the retarded~advanced! commutator Green’s functionsga

R/A
e

n-

s
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-
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in the single-particle case, and just these functions desc
the propagation of a pair of particles in the nonequilibriu
many-particle system.

The case of thermodynamic equilibrium was conside
in some detail in order to show the differences from form
approaches. In former attempts@41,12# closed equations for
the causal two-time two-particle Green’s function were a
ticipated. These equations were enforced by the Shindo
proximation. The expressions for the effective Hamiltoni
were the same as those of the present paper, only for the
of a nondegenerate system. The agreement in this sp
case is easy to understand, taking into account that the
ference between the functions used is of higher order in
density.

For arbitrary degeneracy there are clear differences
tween the former results and ours. In the present results t
is no division by Pauli-blocking terms. The only intrins
static contributions of the effective Hamiltonian~the two-
particle self-energy! are the Hartree-Fock single-particle se
energies and the Pauli-blocked basic potential.

We can conclude that the proper generalization of
Kadanoff-Baym equations for two-particle functions is giv
by the system of equations~39! and ~40!. The algebraic
structure of these equations was identified starting from
concrete approximation, the dynamically screened lad
equation. More general considerations of how the s
energy functions can be determined in higher approximati
will be presented in a subsequent paper@27#.
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APPENDIX: EVALUATION OF DYNAMICALLY
SCREENED LADDER TERMS

The aim of this appendix is to show the evaluation of t
lowest-order terms in the dynamically screened ladder eq
tion. Single-particle self-energy contributions and interact
terms have to be treated on equal footing. Special attentio
paid to the transformation into a structure involving tw
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particle quantities which depend on two times only. T
analysis is made here for the expansion of the functiongab

,

5gab
11,22 . Similar considerations are possible for the oth

three functionsgab
12,21 , gab

21,12 , and gab
22,11 . This is

sketched in Appendix A 3.

1. First-order contributions

There are three diagrams of first order with respect to
dynamically screened interactionVab

S ; see Fig. 2. Two terms
have single-particle self-energy insertions of particlesa and
b, respectively. The third one is a ladder diagram with o
rung.

The first term with a self-energy insertion for particlea is
given simply by@cf. Eq. 4#
:

ce

rs
r

e

e

I 1
(1)~ t,t8!5E

t0

`

dt1 d t̄1@ga,0
, ~ t,t1!Sa

A~ t1 , t̄ 1!ga,0
A ~ t̄ 1 ,t8!

1ga,0
R ~ t,t1!Sa

,~ t1 , t̄ 1!ga,0
A ~ t̄ 1 ,t8!

1ga,0
R ~ t,t1!Sa

R~ t1 , t̄ 1!ga,0
, ~ t̄ 1 ,t8!#gb,0

, ~ t,t8!.

~A1!

In order to achieve the anticipated structure, one can use
semigroup properties for the correlation functiongb,0

, (t,t8).
In the first term on the right hand side, for instance, it ho
that t1, t̄ 1,t8, enforced by the advanced function
Sa

A(t1 , t̄ 1) ga,0
A ( t̄ 1 ,t8). For this case, in Eq.~A1! we can use

gb,0
, (t,t8)5gb,0

, (t,t1)(2 i )gb,0
A (t1 , t̄ 1)(2 i )gb,0

A ( t̄ 1 ,t8). Treat-
ing the other two terms in a similar way, one obtains
e

Keldysh

; see Eq.
I 1
(1)~ t,t8!5E

t0

`

dt1 d t̄1$ga,0
, ~ t,t1!gb,0

, ~ t,t1!@~2 i !Sa
A~ t1 , t̄ 1!gb,0

A ~ t1 , t̄ 1!#~2 i !ga,0
A ~ t̄ 1 ,t8!gb,0

A ~ t̄ 1 ,t8!

1 iga,0
R ~ t,t1!gb,0

R ~ t,t1!@Sa
,~ t1 , t̄ 1!gb,0

, ~ t1 , t̄ 1!#~2 i !ga,0
A ~ t̄ 1 ,t8!gb,0

A ~ t̄ 1 ,t8!

1 iga,0
R ~ t,t1!gb,0

R ~ t,t1!@ iSa
R~ t1 , t̄ 1!gb,0

R ~ t1 , t̄ 1!#ga,0
, ~ t̄ 1 ,t8!gb,0

, ~ t̄ 1 ,t8!%. ~A2!

This fits into the structureG ab
, Sab

A G ab
A 1G ab

R sab
, G ab

A 1G ab
R Sab

R G ab
, . The termI 1

(2) containing a self-energy insertion for th
other particle of speciesb has a similar shape.

The third first-order term in the perturbation expansion is the ladder term. Each of the two vertices can have the
indices1 and2. Thus one obtains the four terms

I 1
(3)~ t,t8!5 i E d t̄1 d t̄2@ga,0~ t, t̄ 1!gb,0~ t, t̄ 2!Vab

S ~ t̄ 1 , t̄ 2!ga,0
, ~ t̄ 1 ,t8!gb,0

, ~ t̄ 2 ,t8!

2ga,0
, gb,0Vab

S.ḡa,0gb,0
, 2ga,0gb,0

, Vab
S,ga,0

, ḡb,01ga,0
, gb,0

, V̄ab
S ḡa,0ḡb,0#. ~A3!

The causal and anticausal Green’s functions can be eliminated in favor of retarded and advanced Green’s functions
~3!:

I 1
(3)5ga,0

R gb,0
R iVab

S ga,0
, gb,0

, 1ga,0
R gb,0

, iVab
SRga,0

, gb,0
, 1ga,0

, gb,0
R iVab

SAga,0
, gb,0

, 1ga,0
R gb,0

, iVab
S,ga,0

, gb,0
A 1ga,0

, gb,0
R iVab

S.ga,0
A gb,0

,

1ga,0
, gb,0

, iVab
SRga,0

A gb,0
, 1ga,0

, gb,0
, iVab

SAga,0
, gb,0

A 1ga,0
, gb,0

, iV̄ab
S ga,0

A gb,0
A . ~A4!
d

in
There are three classes of terms in the above equation~i!
terms ending with a productga,0

, gb,0
, , ~ii ! terms beginning

with one retarded function and ending with one advan
function, and~iii ! terms beginning withga,0

, gb,0
, .

The further procedure is presented in detail for the fi
d

t

term on the right-hand side of Eq.~A4!. The causal screene
potentialVS is expressed according to Eq.~7!. The occurring
Heaviside functions allow it to use the semigroup property
certain functionsgR and g,, respectively, in the following
manner:
E d t̄1 d t̄2 ga,0
R ~ t, t̄ 1!gb,0

R ~ t, t̄ 2!iVab
S ~ t̄ 1 , t̄ 2!ga,0

, ~ t̄ 1 ,t8!gb,0
, ~ t̄ 2 ,t8!

5E d t̄ d t̃@ iga,0
R ~ t, t̄ !gb,0

R ~ t, t̄ !#$Vabd~ t̄ 2 t̃ !1@ igb,0
R ~ t̄ , t̃ !iVab

S.~ t̄ , t̃ !ga,0
R ~ t̄ , t̃ !#

1@ iga,0
R ~ t̄ , t̃ !iVab

S,~ t̃ , t̄ !gb,0
R ~ t̄ , t̃ !#%@ga,0

, ~ t̃ ,t8!gb,0
, ~ t̃ ,t8!#. ~A5!

Thus this term belongs to the anticipated structureG ab
R Sab

R G ab
, .
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Making the same analysis for all terms ofI 1
(3) , one obtains

I 1
(3)~ t,t8!5E d t̄ d t̃ iga,0

R ~ t, t̄ !gb,0
R ~ t, t̄ !$Vabd~ t̄ 2 t̃ !1 igb,0

R ~ t̄ , t̃ !iVab
S.~ t̄ , t̃ !ga,0

R ~ t̄ , t̃ !1 igb,0
, ~ t̄ , t̃ !iVab

SR~ t̄ , t̃ !ga,0
R ~ t̄ , t̃ !

1 iga,0
R ~ t̄ , t̃ !iVab

S,~ t̃ , t̄ !gb,0
R ~ t̄ , t̃ !1 iga,0

, ~ t̄ , t̃ !iVab
SA~ t̃ , t̄ !gb,0

R ~ t̄ , t̃ !%ga,0
, ~ t̃ ,t8!gb,0

, ~ t̃ ,t8!

1E d t̄ d t̃ iga,0
R ~ t, t̄ !gb,0

R ~ t, t̄ !$gb,0
, ~ t̄ , t̃ !iVab

S,~ t̄ , t̃ !ga,0
, ~ t̄ , t̃ !1ga,0

, ~ t̄ , t̃ !iVab
S.~ t̃ , t̄ !gb,0

, ~ t̄ , t̃ !%~2 i !ga,0
A ~ t̃ ,t8!gb,0

A ~ t̃ ,t8!

1E d t̄ d t̃ ga,0
, ~ t, t̄ !gb,0

, ~ t, t̄ !$Vabd~ t̄ 2 t̃ !1~2 i !ga,0
A ~ t̄ , t̃ !iVab

S,~ t̃ , t̄ !gb,0
A ~ t̄ , t̃ !1~2 i !ga,0

A ~ t̄ , t̃ !Vab
SR~ t̃ , t̄ !igb,0

, ~ t̄ , t̃ !

1~2 i !gb,0
A ~ t̄ , t̃ !iVab

S.~ t̄ , t̃ !ga,0
A ~ t̄ , t̃ !1~2 i !gb,0

A ~ t̄ , t̃ !Vab
SA~ t̄ , t̃ !iga,0

, ~ t̄ , t̃ !%~2 i !ga,0
A ~ t̃ ,t8!gb,0

A ~ t̃ ,t8!. ~A6!

A comparison with structure~27! gives four additional terms forSab
R (Sab

A ), and two further terms ofsab
, . Altogether we

obtain the expression~31! for Sab
R and Eq.~33! for sab

, .

2. Second-order contributions

According to Eqs.~27! and ~28! the second-order terms should lead to diagrams with two self-energy insertions o
order with respect toVS ~reducible diagrams!, as well as to diagrams with one self-energy insertion which is of second o
We will demonstrate this here for one typical term. The analysis of the ladder term with two rungs~cf. Fig. 2! leads, among
many other terms, to the following contribution (t1 ,t2 , t̄ 1 , t̄ 2 are integration variables!:

I 25E ga,0
R ~ t,t1!gb,0

R ~ t,t2!iVab
S ~ t1 ,t2!ga,0

R ~ t1 , t̄ 1!gb,0
R ~ t2 , t̄ 2!iVab

S ~ t̄ 1 , t̄ 2!ga,0
, ~ t̄ 1 ,t8!gb,0

, ~ t̄ 2 ,t8!. ~A7!

The procedure to achieve a two-time structure is similar to that in Appendix A 1. According to Eq.~7!, each causal function
VS consists of three terms, which leads to nine terms in Eq.~A7!. All contributions containing at least one time-diagonal p
are easily shown to be reducible. Therefore we concentrate on the others:

I 285E ga,0
R ~ t,t1!gb,0

R ~ t,t2!i @Q~ t12t2!Vab
S.~ t1 ,t2!1Q~ t22t1!Vab

S,~ t1 ,t2!#ga,0
R ~ t1 , t̄ 1!gb,0

R ~ t2 , t̄ 2!

3 i @Q~ t̄ 12 t̄ 2!Vab
S.~ t̄ 1 , t̄ 2!1Q~ t̄ 22 t̄ 1!Vab

S,~ t̄ 1 , t̄ 2!#ga,0
, ~ t̄ 1 ,t8!gb,0

, ~ t̄ 2 ,t8!. ~A8!

These terms should fit into the structureG ab
R Sab(2)

R G ab
, 1G ab

R Sab(1)
R G ab

R Sab(1)
R G ab

, , where Sab(2)
R denotes the two-particle

self-energy in second order, andSab(1)
R are the first-order quantities identified in Appendix A 1.

Analyzing the expressions in Eq.~A8!, we find that the ‘‘mixed’’ terms~with oneV, and oneV.) are reducible. The terms
containing two functionsV. ~or two functionsV,) lead to a reducible term fort2. t̄ 1 (t1. t̄ 2) and to an irreducible part fo
t2, t̄ 1 (t1, t̄ 2). This is shown in Fig. 4 in the form of diagrams. The reducible terms contain two-particle self-e
insertions of first order with respect toVS. The second-order terms contributing toSab(2)

R are given by

Sab(2)
R ~ t,t8!5E dt1 dt2 Q~ t12t2!gb,0

R ~ t,t2!Vab
S.~ t,t2!ga,0

R ~ t,t1!gb,0
R ~ t2 ,t8!Vab

S.~ t1 ,t8!ga,0
R ~ t1 ,t8!1@118a↔228b#. ~A9!
th
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This term can be shown to be a vertex correction to
two-particle vertex.

The other second-order diagrams in Fig. 2 can be
cussed in a similar way. The terms with two single-parti
self-energy insertions for the same particle are reducible
any case. For the other two types of diagrams, there
reducible as well as irreducible parts. This is shown in Fig
The first diagram in each row is a reducible one. The sec
diagram is not reducible, and it corresponds to a vertex c
rection term. The third diagram is not reducible as well, b
is the first self-energy correction to the diagrams of the tw
particle self-energy of first order~cf. Fig. 3!.
e

s-

in
re
.
d
r-
t
-

Because we started from a ladder equation, we do not
all possible second-order terms contributing to the tw
particle self-energy. Therefore we will restrict ourselves
the self-energy in first order with respect to the dynamica
screened interaction.

3. Analysis for the other correlation functions

The analysis for the functionsgab
12,21 , gab

21,12 , and
gab

22,11 can be made in the same way as above. It
sketched here forgab

12,21 . Consider the first rung diagram
Evaluation on the Keldysh contour gives, in analogy to E
~A4!,
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I 1
(3)5ga,0

R gb,0
R iVab

S ga,0
, gb,0

. 1ga,0
R gb,0

, iVab
SRga,0

, gb,0
.

1ga,0
, gb,0

R iVab
SAga,0

, gb,0
. 1ga,0

R gb,0
. iVab

S ga,0
, gb,0

A

1ga,0
, gb,0

R iV̄ab
S ga,0

A gb,0
. 1ga,0

, gb,0
. iVab

SRga,0
A gb,0

,

1ga,0
, gb,0

. iVab
SAga,0

, gb,0
A 1ga,0

, gb,0
. iV̄ab

S ga,0
A gb,0

A .

~A10!

Again the two-time structure can be achieved, and the st
ture is ~cf. Eq. 27!
.

ids

d

i B
c-

gab
12,21(1)5G ab

R @Vab1Sab
R #G ab

12,211G ab
R sab

12,21G ab
A

1G ab
12,21@Vab1Sab

A #G ab
A , ~A11!

with G ab
12,215ga,0

, gb,0
. . The fourth and the fifth terms in Eq

~A10! contributegb,0
. Vab

S ga,0
, 1ga,0

, V̄ab
S gb,0

. to sab
12,21 . To-

gether with the respective contributions from the diagra
involving single-particle self-energies,sab

12,21 is then given
by Eq. ~36! with $a,b,g,d%5$1221%.
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